
Random Effects

 If we believe that underlying structure
(potentially) always exists in small area
health data, then we should attempt to make
some allowance for these effects.

 Without knowledge of the specific effects, it
is only possible to assume an effect of simple
form should be included in the model. This is
often called a random effect.



 Random effects can be incorporated in
models for disease incidence by specifying an
extra level of variation in the model. For
example, for tract count data, the incidence in
each tract may be thought to contain an extra
random component of variation (i.e.
overdispersion).

 This extra effect can be included in a model
for the intensity in each tract where i is the
random effect in the i th tract:

 i  ei.mFi.  i

 Usually to estimate such effects we need to
assume some prior structure for the effect e.g.
a prior distribution.

 A Bayesian approach is often useful:
 a Bayesian model consists of a likelihood and

prior distributions for parameters. The
product of these yields a posterior distribution
for the parameters. The posterior values for
parameters can be averaged to give posterior
expected values.



 Denote a conditional distribution as [a|b)]

 For the Poisson count model with simple
constant tract rate, a hierarchy for random
effects of interest might be:

ni|i  Poisei.i

i  Gamma,



 This leads to the posterior distribution:

vi|ni  Gammani  ,ei  

and the Bayes estimate of vi is given by
ni  
ei  

 Full Bayes analysis would lead to sampling
of the vi|ni distribution, whereas empirical
Bayes methods would provide plug-in
estimates of  and . (Clayton and
Kaldor(1987))

 Maps of the resulting relative risks can be
produced.



Uncorrelated and Correlated Heterogeneity

 the exchangeable Gamma prior for the
relative risk allows for uncorrelated
heterogeneity

 to allow for correlated heterogeneity it is
required that we include a prior distribution
with spatial correlation



 Besag,York and Mollie(1991)[BYM91] first
proposed a general model for constant rate
tract counts, which included both correlated
and uncorrelated heterogeneity:

 i  ei. expti  ui  i

where the uncorrelated heterogeneity is
[i|  N0,, and  has a hyperprior, and

ui|uji  1
 exp 1

 
ji

|ui  uj|

where  i is the neighbourhood of the i th
tract/region. A hyperprior for  is also
assumed.

 The data likelihood is still Poisson but the
relative risk is allowed to have components
for trend/covariates (ti) and heterogeneity
(ui,vi

 Note that there is a log-normal type of link to
the counts and not a direct Gamma prior



 This model is very general as it includes
known and unknown confounders and
expected rates.
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Lip Cancer Eastern Germany: BYM model



Lip Cancer Tutorial

Comparative Analysis of
Mapping Methods:
East German lip cancer

Aims:
 To acquaint participants with analysis of
the East German lip cancer mortality
dataset

 To allow participants to view relative risk
surfaces based on the set of 219 landkeise
with incidence of lip cancer for 1980-1989
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Questions:
1) What is the overall pattern in the SMR
map?
2) What happens to the map when you
choose different percentile scales?

 create the crude SMR map with 10 classes
 create the crude SMR map with 5 classes

A full Bayesian analysis is provided: the
maps are AFF, lognormal model;
lognormal AFF; BYM model.; BYM
modelAFF; BYM model AFF: h; BYM
model AFF: b
Comment on the differences between the
maps.
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AAF variable
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BYM model: h
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