Model Summary

Large population case: Poisson data model

Dependent variable:

Count of disease within a small area:

$$y_i$$
, $i = 1,...,n$
(sometimes n_i is used instead of y_i)

Each area also has and expected rate/count and a relative risk. These are denoted e_i and θ_i .

Data level model:

$$y_i \sim Pois(\mu_i)$$

 $\mu_i = e_i \theta_i$
 $\log(\theta_i) = model \ terms$

Finite population case: binomial model

Note: if you have a count within a finite population in a small area (e. g. birth defects within total births within areas) then the model is naturally binomial. In that case we would have

 y_i and n_i

are the case count and population and p_i the probability of a case in i th area and

$$y_i \sim bin(p_i, n_i)$$
and

$$logit(p_i) = log(\frac{p_i}{1 - p_i}) = model \ terms$$

Hierarchical Models

Using conditioning we have

$$y \mid \theta$$

$$\theta \mid a, b$$

as a simple model form. Here the data model depends on θ and θ depends on a, b.

Example of a spatial model:

Log-normal model:

$$\log(\theta_i) = \alpha + v_i$$

$$v_i \sim N(0, \tau_v)$$

$$\alpha \sim N(0, \tau_{\alpha})$$

Here we have an intercept (α) and an effect in each area that is independent (v_i). They both have normal distributions with zero mean and variance τ_v and τ_α

The BYM model is an extension of this with another effect added:

$$\log(\theta_i) = \alpha + v_i + u_i$$

$$v_i \sim N(0, \tau_v)$$

$$u_i \mid \{u_j\}_{j \neq i} \sim N(\overline{u}_{\delta_i}, \tau_u \mid n_{\delta_i})$$

$$\alpha \sim N(0, \tau_\alpha)$$

Prior Choice

Prior Choice: some notes

- In Bayesian modeling we usually want to be as 'non-informative' as we can be.
- However we can choose priors to 'fix' parameters also
- Prior sensitivity is important
- Choice of priors can affect convergence or even run success

Some Recommendations

Regression parameters

- Natural to consider any prior which is zero centered
- And can provide non-informativeness
- Zero mean Gaussian is often used: N(o,tau)
- Double exponential is also used: ddexp(o,tau)
 - Useful in triaging large predictor sets (Machine Learning)

Precisions

- Precisions: usually the SD ~U(o,C)
- ie tau<-pow(sd,-2); sd ~dunif(o,C)</pre>
- Important when it is a random effect (less so for regression parameter precisions)
- Weakly informative but upper bound must be monitored
- Alternative of tau~Ga(a,b) is used more in INLA and CARBayes, but is less stable computationally in Win/OpenBUGS (see Win/OpenBUGS examples)
- A common weakly informative prior is $tau\sim GA(2,0.5)$
- Gamma distribution is conjugate for precisions

Correlation priors

Correlation is often assigned a uniform prior distribution

$$-1 < \rho < 1$$

 $\rho \sim U(-1,1)$
or
 $1 < \rho$ then
 $\rho \sim U(0,1)$
or $-\log(\rho) \sim Ga(1,1)$
i.e. $-\log(\rho) \sim Exp(1)$

Probabilities

- Probabilities are on the range (0,1) and
- Often a Beta prior distribution is used (which is conjugate for binomial)

```
p \sim Beta(1,1)
or p \sim Beta(0.5,0.5)
or
logit(p) \sim N(0,\tau)
```