

OpenBUGS

OpenBUGS
A demonstration with reference to disease mapping

Outline

• Introduction
• BUGS and OpenBUGS
• Graphical Models
• DoodleBUGS
• Example - Disease

Mapping
• Summary

2

Introduction

• Bayesian Inference Using Gibbs Sampling
• BUGS

• Analysis of Complex Models

• Bayesian Methods

• Markov Chain Monte Carlo Integration
• Useful when no closed form exists

Classic BUGS

• Declarative Language
• Similar to Splus

• Complex Statistical Models
• Missing data
• Measurement Error
• No closed form for Likelihood

• Graphical Modelling
• Flexible compared to approximations

3

OpenBUGS

• Similar to Classic BUGS
• Plus new methodological developments

• Graphical representation of model
• DoodleBUGS

• Menu Control of session

• Cut and paste to other packages

BUGS and OpenBUGS

• No data management facility
• Why reinvent the wheel?

• “Easy” interface with other packages
• R and Splus
• Stata (S. Bashir)

• Simple analysis of output

4

Working with BUGS

Output
Analysis

R/Splus
STATA

Prepare
Data

Editor
Stats package
Spread sheet

BUGS
Analysis

WinBUGS
BUGS

Graphical Models

• Complex multivariate probability models
• Representation
• Visualisation

• Graphs...
• simplify complex models
• communicate structure of the problem
• provide basis for computation

5

OpenBUGS

• BUGS language

• DoodleBUGS

• OpenBUGS
https://www.mrc-bsu.cam.ac.uk/
software/bugs/openbugs/

DoodleBUGS

• Start OpenBUGS
• Select “Doodle” from menu bar

6

DoodleBUGS - Basics

• Select “New…”

• Press “ok”
• You have a window to “Doodle” in.

Nodes

• Creating a node
• Mouse click in Doodle Window

• Deleting a node: CTRL + Del

7

• Nodes can be
• Stochastic

• Logical

• Constant (rectangle)

Node Types

Example - Simulation

• Let
• r1 ~ Bin (0.25, 250)
• r2 ~ Bin (0.35, 150)

• Calculate p: common proportion for r1 & r2

• p = (r1+r2)/400

• Classical p = 0.2875

8

DoodleBUGS

• Start with r1 ~ Bin(0.25, 250) (stochastic node)

DoodleBUGS

• Add r2 ~ Bin(0.35, 150) (stochastic node)

9

Logical Nodes
• Add p as a logical node

• To define a logical node click on “type” for choices.

Logical Functions

• Add “edges” for the logical relationship

• Whilst node p is highlighted, CTRL + click in “parent
nodes” r1 and r2 (hollow arrows ! logical function)

10

Stochastic Nodes

• Stochastic dependence
• p1 ~ N(0.25, 0.000026) (i.e., p1 ~ [0.24, 0.26])
• size1 = 250 (constant)

• Single arrows for stochastic dependencies

Normal Distribution

• Note the Normal distribution in BUGS is defined
as N (mean, precision) where precision = 1/variance

• Note that we can define upper and lower bounds so that
the proportion is between 0 and 1.

11

DoodleBUGS Model

• Let us add these stochastic dependencies
to our “logical” model

DoodleBUGS Model

• What is our model?

• r1 ~ Bin (p1, size1)
• p1 ~ N (0.25, 0.000026)
• size1 = 250

• r2 ~ Bin (p2, size2)
• p2 ~ N (0.35, 0.000026)
• size2 = 150

12

OpenBUGS Modelling

• Running our model in
OpenBUGS

• Create a New document
• Menu bar - File - New

• A New document window will appear

OpenBUGS Document

• Select your Doodle from your Doodle
Window
• Menu bar - Edit - Select Document

• Copy your Doodle
• Menu bar - Edit - Copy

• Paste it into your New Document
• Menu bar - Edit - Paste

13

Model Data

• Before running we need to give BUGS some
data

• Type list(size1=250, size2=150) at the top (or the
bottom) of your new document.

Running BUGS

• Use “Specification...” from the “Model”
option on Menu Bar to run BUGS

14

Running BUGS

Checks
Syntax

Start
Sampler

Check
Model

Load
Data

Compile
Model

Initial
Values

Update
Sampler

Check Model

• Select the Doodle (note the hairy boarder)

• Menu bar - Model - Check model
• Note the message in bottom left hand

corner

15

Load Data

• Highlight the word “list”

• Menu bar - Model - Data
• Bottom left hand corner

Compiling the Model

• Menu bar - Model - Compile
• Bottom left hand corner

16

Load Initial Values

• Menu bar - Model - Gen inits
• Bottom left hand side

Update the Model

• Menu bar - Model - Update

• 1000 MCMC updates to be carried out.

17

Burn In

• Model has been updated

• MCMC run did not store any data.
• Used for the “burn in”

• Store values by “monitoring” them to
• Draw inferences
• Monitor MCMC run

Monitoring Nodes

• Monitoring p our parameter of interest
• Menu bar - Inference - Samples...

• Sample Monitor Tool

18

Monitoring Nodes

• Type name of node “p” to monitor
• Press “set”

Update & Monitor

• Update model again

• 1000 values “monitored” of the MCMC run
for p

19

Summary Statistics

• Summary statistics
• Select “p” from the Sample Monitor Tool
• Press “stats” (Sample Monitor Tool)

• Node statistics window

Summary Statistics

• Mean = 0.2873
• Median = 0.285 (usually more stable)

• 95% credible interval (0.245, 0.335)
• MCMC run size 1000

20

MCMC Time Series

• Press “History” in Sample Monitor Tool

Kernel Density

• Press “Density” in the Sample Monitor Tool

21

Kernel Density

• Increase monitored values to 25,000

Plates

• Creating a plate
• CTRL + mouse click in Doodle Window

• Deleting a plate: CTRL + Del

Lips: spatial smoothing of cancer rates

The rates of lip cancer in 56 counties in Scotland have been analysed by Clayton and Kaldor (1987) and
Breslow and Clayton (1993). The form of the data includes the observed and expected cases (expected
numbers based on the population and its age and sex distribution in the county), a covariate measuring
the percentage of the population engaged in agriculture, fishing, or forestry, and the "position'' of each
county expressed as a list of adjacent counties.

County Observed Expected x SMR Adjacent
cases cases (% in agric.) counties

1 9 1.4 16 652.2 5,9,11,19
2 39 8.7 16 450.3 7,10
...
56 0 1.8 10 0.0 18,24,30,33,45,55

We note that the extreme SMRs (Standardised Mortality Ratios) are based on very few cases. Breslow
and Clayton initially consider a random-effects Poisson model allowing for over-dispersion, where
Oi,Ei are the observed and expected cancer incidence in the ith county.

Oi ~ Poisson(µi)
log µi = log Ei + α1xi / 10 + bi

bi ~ Normal(α0, τ)
SMRi = 100 µi / Ei

α0, α1 and τ are given independent "noninformative'' priors. We note that the prior distribution for the b's can
be easily shown to be equivalent to a model with an "intrinsic" prior

_
bi | bj, j =/= i ~ Normal(b \i, N−1/N τ)

_
where N is the number of counties, and b \i = 1/(N−1) Σj =/= i bj is the average in all counties except i.

Spatial smoothing using an intrinsic prior

Breslow and Clayton consider a random-effects Poisson model allowing for over-dispersion and spatial
correlation, using the conditional autoregressive (CAR) model of Besag (1974), which may be written

Oi ~ Poisson(µi)
log µi = log Ei + α0 + α1xi / 10 + σ bi

_
bi ~ Normal(bi, ni)
ni = Number of neighbours of county i
_
bi = 1/ni Σ j = neighbour(i) bj

As with the exchangeable model, introducing the intrinsic prior means that a level term α0 is not necessary
in this model, although Breslow and Clayton (1993) retain this term due to their imposition of the constraint
that Σi bi = 0 . Note that a standard noninformative prior for σ, such as a Gamma(0.001, 0.001) gives a
full conditional which is not log concave; hence WinBUGS will use the slice sampling algorthim for this
parameter. An exponential prior (or a Gamma with shape parameter > 1) will yield a log-concave full
conditional however, allowing the use of adaptive rejection sampling.

Spatial model with intrinsic prior and hyperparameter

As in the ice example, we can introduce a precision parameter as a hyperparameter for the random effects.

Oi ~ Poisson(µi)
log µi = log Ei + α0 + α1xi / 10 + bi

_
bi ~ Normal(bi, τi)
ni = Number of neighbours of county i
_
bi = 1/ni Σ j = neighbour(i) bj

τi = ni / τ

It can be shown that this model is equivalent to the improper prior
_

p(b1,...,bI | τ) proportional to τ I/2 exp(−τ / 2 Σ ni bi (bi − b i))

which provides the correct likelihood term for τ . Breslow and Clayton mention that this prior can also be
expressed as

p(b1,...,bI | τ) proportional to τ I/2 exp(−τ / 4 Σ i ~ j ni bi (bi −bj)2)

where "~" here represents "is a neighbour of".

model
{

b[1:regions] ~ car.normal(adj[], weights[], num[], tau)
b.mean <- mean(b[])
for (i in 1 : regions) {

O[i] ~ dpois(mu[i])
log(mu[i]) <- log(E[i]) + alpha0 + alpha1 * x[i] / 10 + b[i]
SMRhat[i] <- 100 * mu[i] / E[i]

}
alpha1 ~ dnorm(0.0, 1.0E-5)
alpha0 ~ dflat()
tau ~ dgamma(rstar, dstar) sigma <- 1 / sqrt(tau)

}

Data click on one of the arrows to open data

Inits click on one of the arrows to open initial values

Results

A 1000 update burn in followed by a further 10000 updates gave the parameter estimates

� �

� �

node mean sd MC error 2.5% median 97.5% sample
alpha1 0.3501 0.1338 0.006131 0.07618 0.3556 0.597 10000
sigma 0.756 0.1213 0.002739 0.5448 0.7471 1.021 10000

Summary

• BUGS is a power tool

• Bayesian Analysis

• Simulation Tool

• Graphical Models

• Doodle BUGS

• Simple representation of model

• Advanced disease mapping models can
be fitted

(see e.g. Lawson and Clark (2002) Stats in
Med, 21,359-370)

• Fairly easy to use!

	Open/WinBUGS
	Overview
	OpenBUGS screen shot
	OpenBUGS demo………

