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Modern Posterior inference
 Unlike the usual ML estimates of risk, a Bayesian 

model is described by a distribution and so a range of 
values of risk will arise (some more likely than others)

 Posterior distributions are sampled to give a range of 
these values (posterior sample)

 This contains a  large amount of information about the 
parameter of interest
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A Bayesian Model
 A Bayesian model consists of a likelihood and prior 

distributions
 The product of the likelihood and the prior 

distributions gives the most important distribution: 
the posterior distribution

 In Bayesian modeling all the inference about 
parameters is made from the posterior distribution.
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Posterior Sampling
 There are two basic methods used for this:

 Gibbs Sampling

 Metropolis-Hastings sampling

 These are examples of Markov chain Monte Carlo 
(McMC) methods
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Gibbs Sampling
 This requires knowledge of the conditional 

distributions of the parameters given the other 
parameters

 This is a fast algorithm as it always yields a new sample 
value at each iteration

 WinBUGS was developed for this method (Bayesian 
Inference Using Gibbs Sampling) 
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Gibbs Sampling
 Example: set of parameters: 
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Metropolis-Hastings (MH)
 This is a simple algorithm for updating parameters and 

sampling posterior distributions.
 It does not require knowledge of the conditional 

distributions BUT does not guarantee a useful new 
sample value at each iteration

 Simple to implement
 WinBUGS now includes MH updating
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MH sampling
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How Posterior Sampling Works
 In general a posterior distribution could be so 

complex that we must use simulation to obtain 
samples.

 Both Gibbs sampling and MH use simulation to 
generate sample values over large numbers of 
iterations. These methods are iterative and they 
must converge to a stable state (the Posterior 
distribution)

 Convergence must be checked
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Checking Convergence
 A time series of parameters 

can be monitored
 Multiple parameter series 

can be checked
 Overall model fit measures 

(Deviance) can be 
monitored

 The final state of the 
sampler should be 
independent of the initial 
state 
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Convergence Measures
 Single Chain: Q-Q 

plots and cusums of 
parameters or overall 
measures

 Multi-chain: BGR 
statistic (used in 
WinBUGS)
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Convergence

McMc methods require the use of diagnostics
to assess whether the iterative simulations
have reached the equilibrium distribution of
the markov chain. Sampled chains require to
be run for an intial burn-in period until they
can be assumed to provide approximately
correct samples from the posterior distribution
of interest. This burn -in period can vary
considerably between different problems. In
addition, it is important to ensure that the
chain manages to explore the parameter
space properly so that the sampler does not
‘stick’ in local maxima of the surface of the
distribution. Hence, it is crucial to ensure that
a burn-in period is adequate for the problem
considered. Judging convergence has been
the subject of much debate and can still be
regarded as art rather than science: a
qualitative judgement has to be made at
some stage as to whether the burn-in period
is long enough..

There are a wide variety of methods now



available to assess convergence of chains
within McMC. cite: robcasella and cite: chenib
provide recent reviews. The available
methods are largely based on checking the
distributional properties of samples from the
chains.



Single chain methods

First, global methods for assessing
convergence have been proposed which
involve monitoring functions of the posterior
probability.at each iteration. These methods
look or stabilisiation of the probability value.
This value forms a time series, and special
cusum methods have been proposed
(cite: yumyk).

Second, graphical methods have been
proposed which allow the comparison of the
whole distribution of successive samples.
Quantile-quantile plots of successive lengths
of single variable output from the sampler can
be used for this purpose.



Multi-chain methods

Single chain methods can, of course, be
applied to each of a multiple of chains. In
addition, there are methods that can only be
used for multiple chains. The Gelman-Rubin
statistic was proposed as a method for
assessing the convergence of multiple chains
via the comparison of summary measures
across chains (cite: gelrubin, cite: brookgel,
cite: robcasella, Ch. 8). There is some debate
about whether it is useful to run one long
chain as opposed to multiple chains with
different start points. The advantage of
multiple chains is that they provide evidence
for the robustness of convergence across
different subspaces. However, as long as a
single chain samples the parameter space
adequately, then these have benefits. The
reader is referred to cite: robcasella, chapter
8 for a thorough discussion of diagnostics
and their use.



M-H versus Gibbs Algorithms
 There are advantages and disadvantages to

M-H and Gibbs methods. The Gibbs Sampler
provides a single new value for each  at each
iteration, but requires the evaluation of a
conditional distribution.

 On the other hand the M-H step does not
require evaluation of a conditional
distribution but does not guarantee the
acceptance of a new value.

 In addition, block updates of parameters are
available in M-H, but not usually in Gibbs
steps (unless joint conditional distributions
are available).

 If conditional distributions are difficult to
obtain or computationally expensive, then
M-H can be used and is usually available.



 In summary, the Gibbs Sampler may provide
faster convergence of the chain if the
computation of the conditional distributions
at each iteration are not time consuming.

 The M-H step will usually be faster at each
iteration, but will not necessarily guarantee
exploration.

 In straightforward hierarchical models where
conditional distributions are easily obtained
and simulated from, then the Gibbs Sampler
is likely to be favoured.

 In more complex problems, such as many
arising in spatial statistics, resort may be
required to the M-H algorithm.



A simple M-H example Assume that for m
regions, the count ni i  1, . . . . ,m is observed.
In addition, the expected count in the i th
region, ei is also observed. Assume also that
the counts are independently distributed and
have a Poisson distribution with Eni  .ei,
where  is a constant parameter describing
the relative risk over the whole study window.
The likelihood in this case, bar a constant, is
given by

L  exp
i1

m

ei.
i1

m

eini .

Assuming a flat prior distribution for , then
the M-H sampler for this problem reduces to
a stochastic exploration of the likeihood
surface. Hence the following sampler criterion
is found for the  parameter in this case:

L 
L

 expse   .  


sn

where se 
i1

m

ei and sn 
i1

m

ni.



Special Methods
 Alternative methods exist for poseterior

sampling when the basic Gibbs or M-H
updates are not feasible or appropriate.

 For example, if the range of the parameters
are restricted then slice sampling can be used
(Robert and Casella (1999), Ch. 7; see also
Radford Neal’s web site:
http://www.cs.toronto.edu/~radford/).

 When exact conditional ditributions are not
available but the posterior is log-concave then
adaptive rejection sampling algoirthms can be
used.

 The most general of these algorithms
(adaptive rejection sampling (ARS)
algorithm; Robert and Casella (1999)
p.57-59) has wide applicability for
continuous distributions, although may not be
efficient for specific cases.

 Block updating can also be used to effect in
some situations.



 When generalised linear model components
are included then block updating of the
covariate parameters can be effected via
multuivariate updating.



A WinBUGS example
 South Carolina congenital deaths 1990
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WinBUGS Code for Poisson-Gamma Model
model
{
for (i in 1:m)
{

# Poisson likelihood for observed counts
y[i]~dpois(mu[i])
mu[i]<-e[i]*theta[i]
# Relative Risk
theta[i]~dgamma(a,b)

}

# Prior distributions for "population" parameters
a~dexp(0.1)
b~dexp(0.1)

# Population mean and population variance
mean<-a/b
var<-a/pow(b,2)
}

 Poisson likelihood
 Gamma (a,b) prior

 Exponential hyper-priors 
for a and b
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Data Entry
list(
m=46,
y=c(0,7,1,5,1,1,5,16,0,17,4,0,0,1,1,7,1,3,0,0,8,2,13,7,0,8,0,3,2,4,1,11,0,1,2,3,3,8,6,14,3,11,

6,0,1,5),
e=c(1.129778827,6.667008775,0.650279674,6.988864371,0.95571406,1.123210345,5

.908349156,8.539026017,0.601016062,18.92051111,2.272694617,1.73736337,2.019
808077,1.688099759,1.747216093,3.221840201,1.835890594,5.221942834,0.9787
03751,1.254579976,6.407553754,2.676656232,16.57884744,3.077333607,1.08708
3697,7.606301637,1.018114641,2.15774619,2.844152512,2.955816698,0.985272233
,9.22871658,0.38097193,1.855596038,1.579719813,1.579719813,2.647098065,4.79
1707292,4.144711859,15.70852363,0.765228101,11.32077795,6.256478678,1.50089
8035,2.085492893, 7.297583004))
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Initial Values
 list(a=0.1,b=0.1,theta=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1))
 list(a=0.2,b=0.2,theta=c(1,1,1,1.3,1,1,1,1.5,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0.1,1,1,1,1,1,1,1))
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Run: 10000 burn-in
 BGR statistic

 Posterior Marginal 
density estimates

deviance chains 1:2

iteration
10001 15000

    0.0

    0.5

    1.0

a chains 1:2 sample: 20000

    0.0    20.0    40.0

    0.0
   0.02
   0.04
   0.06
   0.08
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b chains 1:2 sample: 20000

    0.0    20.0    40.0    60.0

    0.0
   0.02
   0.04
   0.06
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Relative risk and mean maps
(5) <    0.9

(22)     0.9 -     1.0

(12)     1.0 -     1.1

(4)     1.1 -     1.2

(2)     1.2 -     1.3

(1) >=    1.3

(samples)means for theta

  200.0km

N

(32) <    5.0

(9)     5.0 -    10.0

(4)    10.0 -    15.0

(1) >=   15.0

(samples)means for mu

  200.0km

N



Posterior Summary StatisticsPosterior Summary Statistics
 a small sample of summary statistics available (a, b, 

and first 10 regions for theta: mean, sd, MC error 
2.5%,median, 95% CI)
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Nodestatistics
node mean sd MC error 2.5% median 97.5% start sample
a 16.13 6.184 0.5473 6.429 15.71 29.17 10001 10000
b 16.01 6.195 0.5483 6.386 15.59 29.62 10001 10000
theta[1] 0.9392 0.2624 0.004627 0.4738 0.9261 1.511 10001 10000
theta[2] 1.024 0.2313 0.002664 0.6236 1.006 1.529 10001 10000
theta[3] 1.034 0.2839 0.003567 0.5578 1.008 1.674 10001 10000
theta[4] 0.9111 0.2119 0.003457 0.5321 0.8986 1.364 10001 10000
theta[5] 1.02 0.2802 0.003969 0.5459 0.9956 1.638 10001 10000
theta[6] 1.002 0.2706 0.003371 0.5391 0.9766 1.606 10001 10000
theta[7] 0.9624 0.2277 0.002804 0.5637 0.9443 1.459 10001 10000
theta[8] 1.324 0.2608 0.00755 0.8846 1.301 1.913 10001 10000
theta[9] 0.9715 0.276 0.003904 0.4931 0.9477 1.582 10001 10000
theta[10] 0.9474 0.1705 0.002318 0.6418 0.9369 1.315 10001 10000


