
Bayesian Hierarchical
Modelling



Likelihood and posterior
distributions
 Prior distributions and likelihood provide two

sources of information about any problem.
 The likelihood informs about the parameter

via the data
 the prior distributions inform via prior beliefs

or assumptions.
 When there are large amounts of data, ie the

sample size is large, the likelihood will
contribute more to the estimation. When the
example is data poor then the prior
distributions will dominate the analysis.



Definitions

 The likelihood of data yi given the
parameters  i, is Ly|

 The log likelihood is ly|.
 Note that  does not have to be the same

dimension as y.
 The product of the likelihood and the prior

distributions is called the posterior
distribution.

 This distribution describes the behaviour of
the parameters after the data are observed and
prior assumptions are made.

 The posterior distribution is defined as :

p|y Ly|g

where g is the joint distribution of the 
vector.



Poisson-Gamma example in
Epidemiology
A simple example of this type of model in is
the where the data likelihood is Poisson and
there is a common relative risk parameter
with a single gamma prior distribution:

p|y Ly|g

where g is a gamma distribution with
parameters , i.e. G,,and
Ly|  

i1
m eiyi expei bar a constant

only dependent in the data. A compact
notation for this model is :

yi|  Poisei

  G,.



Hierarchical Models
 In the previous section a simple example of a

likelihood and prior distribution was given. In
that example the prior distribution for the
parameter also had parameters controlling its
form. These parameters (, can have
assumed values, but more usually an
investigator will not have a strong belief in
the prior parameters values. The investigator
may want to estimate these parameters from
the data.

 Alternatively and more formally, as
parameters within models are regarded as
stochastic (and thereby have probability
distributions governing their behaviour), then
these parameters must also have distributions.
These distributions are known as hyperprior
distributions, and the parameters are known
as hyperparameters.



 The idea that the values of parameters could
arise from distributions is a fundamental
feature of Bayesian methodology and leads
naturally to the use of models where
parameters arise within hierarchies.

 In the Poisson-gamma example there is a two
level hierarchy:

  has a G, distribution at the first level of
the hierarchy and  will have a hyperprior
distribution (h as will  (h), at the second
level of the hierarchy.



 This can be written as :

yi|  Poisei

|,  G,

|  h

|  h.



 For thes types of models it is also possible to
use a graphical tool to display the linkages in
the hierachy. This is known as a directed
acyclic graph or DAG for short.

 On such a graph lines connect the levels of
the hierarchy and parameters are nodes at the
the ends of the lines.

 Clearly it is important to terminate a
hierarchy at an appropriate place, otherwise
one could always assume an infinite
hierarchy of parameters.

 Usually the cut off point is chosen to lie
where further variation in parameters will not
affect the lowest level model.

 At this point the parameters are assumed to
be fixed.



 For example, in the gamma-Poisson model if
you assume  and  were fixed then the
Gamma prior would be fixed and the choice
of  and  would be uninformed. The data
would not inform about the distribution at all.
However by allowing a higher level of
variation i.e. hyperpriors for , , then we can
fix the values of  and  without heavily
influencing the lower level variation. Below
is displayed the DAG for the simple two level
gamma-Poisson model just described.
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Posterior Inference
 When a simple likelihood model is employed,

often maximum likleihood is used to provide
a point estimate and associated variability for
parameters.

 This is true for simple epidemiological
models.

 For example, in the model yi|  Poisei
the maximum likelihood estimate of  is the
the overall rate for the study region i.e.
 yi/ ei.On the other hand, the SMR is the
maximum likelihood estimate for the model
yi| i  Poisei i.



 When a Bayesian hierachical model is
employed it is no longer possible to provide a
simple point estimate for any of the  is.

 This is because the parameter is no longer
assumed to be fixed but to arise from a
distribution of possible values.

 Given the observed data, the parameter or
parameters of interest will be described by the
posterior distribution, and hence this
distribtuion must be found and examined.

 It is possible to examine the expected value
(mean) or the mode of the posterior
distribution to give a point estimate for a
parameter.



 Just as the maximum likelihood estimate is
the mode of the likelihood, then the maximum
aposteriori estimate is that value of the
parameter or parameters at the mode of the
posterior distribution.

 More commonly the expected value of the
parameter or parameters is used. This is
known as the posterior mean (or Bayes
estimate).

 For simple unimodal symetrical distrbutions,
the modal and mean estimates coincide.



Finding posterior means and
sampling
 For some simple posterior distributions it is

possible to find the exact form of the
posterior distribution and to find explicit
forms for the posterior mean or mode.

 However, it is commonly the case that for
reasonably realistic model, it is not possible
to obtain a closed form for the posterior
distribution.

 Hence it is often not possible to derive
simple estimators for parameters such as the
relative risk.

 In this situation resort must be made to
posterior sampling i.e. using simulation
methods to obtain samples from the posterior
distribution which then can be summarised to
yield estimates of relevant quantities.

 In the next section we discuss the use of
sampling algorithms for this purpose.



 An exception to this situation where a closed
form posterior distribution can be obtained is
the gamma-Poisson model where ,  are
fixed.

 In that case, the relative risks have posterior
distribution given by:

 i  Gyi  ,ei  

 The posterior expectation of  i is
yi  /ei  .

 Of course if  and  are not fixed and have
hyperprior distributions then the posterior
distribution is more complex.





for(i IN 1 : m)
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