Adaptive trial design in oncology clinical trials: The state of the art and some innovations in dose finding strategies

Elizabeth Garrett-Mayer
Emily Van Meter
September 28, 2009
What is an adaptive trial?

- *Adaptive clinical trials* are designed to use accumulating information to determine how to modify the trial as it progresses.
- Adaptive aspects of the trial are predetermined before the trial begins and are a part of the planned design.
- Modifications in an adaptive trial must maintain the *validity* and *integrity* of the trial:
 - Validity: providing correct inference (e.g., adjusted estimates of confidence intervals and p-values)
 - Integrity: providing convincing evidence to the scientific community
Level of adaptation

- Adaptive designs occur in stages
- At the end of each stage, a possible adaptation of the trial may occur.
- Examples:
 - Simon two-stage design: two stages
 - Continual reassessment method: Continuous staging, adaptation may occur after each cohort (of size ≤ 3) is enrolled or observed for outcomes.
Why oncology?

- **Candidate treatments** considered for clinical trials have increased in greater numbers than the number of patients eligible for trials in recent decades creating a demand for greater efficiency in trial design.

- Many new agents are **targeted therapies** which may only be tested in patients who have a specific cancer subtype, or particular genetic mutation or protein overexpression.

- **Patient-advocates** are extremely valuable in representing the patient perspective in trial design and have been vocal in their preferences for adaptive designs in oncology.

 (Perlmutter, 2007; Berry, 2004).
Bayesian?

- Sometimes, but not always.
- Bayesian is the trend so it is a misconception that adaptive trials are Bayesian.
- Partly, semantics: what does Bayesian mean?
 - is it the formal use of a prior distribution coupled with a likelihood to create a posterior distribution?
 - or is it the idea of using preliminary information to update your knowledge?
Example: Simon Two Stage design

- Allows early stopping for futility
- If, after a subset of patients have been treated, the response rate is so low that it is unlikely you will reject the null at the end, you stop the study
- Preserves alpha and beta. Usually only minor increase in N compared to a “single stage” approach

Stage 1: enroll N_1 patients

- X_1 or more respond
- Fewer than X_1 respond

Stage 2: Enroll an additional N_2 patients
- Stop trial
What do you think?

- *Wikipedia*: “**Bayesian inference** is statistical inference in which evidence or observations are used to update or to newly infer the probability that a hypothesis may be true.”

- Despite
 - Simon is a frequentist
 - Neyman-Pearson hypothesis testing framework
 - type I and type II errors
 - ...it may be Bayesian afterall!

- But, when people distinguish between Bayesian adaptive designs and others, they are *usually* referring to the formal use of priors*likelihoods = posteriors
Are they everywhere?

- Not even close
- A few reasons (Simon pointed these out back in 1977, but they are still true today):
 - most clinical trials do not have just one goal
 - e.g. efficacy could be equivalent in two treatments but one would be considered superior if safety outcomes were better
 - seemingly impossible to move away from “rejecting the null” idea. Without p-values, people don’t know how to behave!
 - convincing non-statisticians in clinical research is not easy
 - they are harder to understand
 - some concern over letting the computer decide how to treat patients
PhRMA: Adaptive Designs Working Group

- The goal of this group are to facilitate and foster:
 - wider usage
 - regulatory acceptance
 - clinical development
- The approach: fact-based evaluation of the benefits and challenges of these types of designs
- Published numerous papers on the topics: Journal of Biopharmaceutical Statistics devoted an entire issue to manuscripts from ADWG.

 (Gallo, 2006; J of BioPharm, v 17(6), 2007).
Some ways to adapt trials

- Adaptive Allocation
 - Covariate-Adaptive
 - Response-Adaptive
- Adaptive Sample Size and Stopping
- Adaptive Dose Escalation
Aside: randomization

- What does it mean for a study with k treatment arms to be randomized?
- It does **NOT** mean that patients have an equal chance of being assigned to each arm in a study.
- Randomness:
 - there is some probability ($0 < p < 1$) of assignment to each arm.
 - that is, it is not “deterministic” (by patient, physician, or any other means)
 - p can vary across arms!
Adaptive Allocation

- Assign patients to treatment arms based on information collected on patients already in the trial

- Covariate-adaptive: The goal is to achieve balance of covariate factors across the arms so that comparisons of treatment effects will untainted by confounding.

- Response-adaptive:
 - a new patient is assigned to a treatment arm based on the relative success of the patients treated thus far on the trial
 - patients are more likely to be randomized to the arm with greatest success (e.g., arm with the highest response rate).
Response Adaptive Randomization

- **Frequentist approaches:** Karrison et al (2003), Zelen (1978), and Hu and Rosenberger (2006).

- **Thall and Wathen (2007):** Randomized phase II trial of gemcitabine (G) alone versus gemcitabine plus docetaxel (GD) in patients metastatic soft tissue sarcomas by (Maki et al. (2007).
 - success = tumor response (shrinkage by >30%)
 - failure = progressive disease
Simplified example

- Define $\theta_{G+D} =$ probability of response on G+D
- Define $\theta_G =$ probability of response on G

Randomization probability:

$$p_{G+D} = \frac{P(\theta_{G+D} > \theta_G \mid data)^c}{P(\theta_{G+D} > \theta_G \mid data)^c + P(\theta_G > \theta_{G+D} \mid data)}$$
A

- $P(B > A) = 0.72$
- $P(B)$ for next pt $(c=1) = 0.72$
- $P(B)$ for next pt $(c=0.5) = 0.61$

B

- $P(B > A) = 0.81$
- $P(B)$ for next pt $(c=1) = 0.81$
- $P(B)$ for next pt $(c=0.5) = 0.68$

C

- $P(B > A) = 0.92$
- $P(B)$ for next pt $(c=1) = 0.92$
- $P(B)$ for next pt $(c=0.5) = 0.78$

D

- $P(B > A) = 0.98$
- $P(B)$ for next pt $(c=1) = 0.98$
- $P(B)$ for next pt $(c=0.5) = 0.88$
Adaptive Sample Size

- Lots of examples: any design that incorporates early stopping rule for futility, superiority, safety is technically an adaptive sample size design
 - Simon two-stage
 - Group sequential
 - any trial with alpha spending
 - predictive probability

- More complex: sample size calculations are performed as an interim analysis

Simple example

- Monitor if enough evidence has accumulated to accept/reject a hypothesis

- Example:
 - single arm phase II study of cancer treatment
 - outcome is response
 - Two hypotheses:
 - response rate = 0.20
 - response rate = 0.40
 - Frequentist approach: with alpha = beta = 0.10 requires 39 patients.
 - Do we need to complete the trial to decide?
One simple example: Single arm phase II study with null $p = 0.20$; alternative $p = 0.40$
Adaptive Dose Finding

- Most popular adaptive dose finding design is the Continual Reassessment Method (CRM)

- Originally devised by O’Quigley, Pepe and Fisher (1990) where dose for next patient was determined based on toxicity responses of patients previously treated in the trial

- Purely Bayesian design
 - Choose a mathematical model (likelihood)
 - Choose a prior distribution
 - Estimate the posterior distribution of parameters of interest

- Find dose that is most consistent with desired toxicity rate
 - need to define what IS a toxicity
 - need to choose an acceptable toxicity rate
Example:

One-parameter logistic model

\[p(\text{toxicity}|\text{dose} = d_i) = \frac{\exp(3 + \alpha d_i)}{1 + \exp(3 + \alpha d_i)} \]
(where \(d = \text{dose} - 7 \))
What are the goals?

1. Find alpha
 - What is the alpha that is most consistent with the model?
 - Recall: Bayesian
 - Prior on alpha
 - Estimate likelihood
 - Find “best” alpha using posterior

2. Find the dose for the next patient
 - After alpha is estimated
 - Plug alpha “hat” in model
 - Find dose that is consistent with desired DLT rate

Notes:
- doses can be continuous or discrete increments
- actual doses are “mapped” to another scale
Prior

- VERY IMPORTANT
- Prior has large impact on behavior early in the trial
- Requires a lot of simulations in the planning stages of the trial to see how the design will behave under a variety (or all!) of the possible scenarios
Scenarios

Dose-Toxicity Relationship

- Prior
- Next: no DLT
- Next: DLT

Dose

Dose-Toxicity Relationship
Theoretically: a beautiful design!

- **BUT!**
 - Concern over starting in mid-dose range
 - Concern over escalating without enough data
 - Concern over escalating too quickly

- Due to safety concerns, several authors developed variants
 - Modified CRM (Goodman et al. 1995)
 - Extended CRM [2 stage] (Moller, 1995)
 - Restricted CRM (Moller, 1995)
 - and others….

- Some variants are not Bayesian!
Modified CRM
(Goodman, Zahurak, & Piantadosi, Statistics in Medicine, 1995)

Carry-overs from standard CRM
• Mathematical dose-toxicity model must be assumed
• To do this, need to think about the dose-response curve and get preliminary model.
• We CHOOSE the level of toxicity that we desire for the MTD
• At end of trial, we estimate dose response curve.
Modified CRM
(Goodman, Zahurak, & Piantadosi, Statistics in Medicine, 1995)

- **Modifications by Goodman et al.**
 - Use ‘standard’ dose escalation model until first toxicity is observed:
 - Choose cohort sizes of 1, 2, or 3
 - Use standard ‘3+3’ design (or, for example, ‘2+2’)
 - Upon first toxicity, **fit the dose-response model using observed data**
 - Estimate α
 - Find dose that is closest to desired toxicity rate.
 - **Does not allow escalation to increase by more than one dose level.**
 - De-escalation can occur by more than one dose level.
Real Example

- Shows how the CRM works in practice
- Dose finding trial in a pediatric population of patients with high risk osteosarcoma to determine the maximum tolerated dose of 153Sm-EDTMP (Samarium).
- Target DLT rate was 30%
- Goodman’s modified CRM
 - cohorts of size two
 - one-parameter dose toxicity model.
- The first dose was to be 1.0 mCi/kg
- Dose increments increase by 40% up to a maximum dose of 4.0 mCi/kg.