Oncology Biostatistics
What it is and why it is so important

Elizabeth Garrett-Mayer, PhD
Associate Professor of Biostatistics
Director, Biostatistics Core, Hollings Cancer Center
What it is

- **Biostatistics** or **biometry** is the application of **statistics** to a wide range of topics in **biology**
- **Oncology biostatistics** applies statistics to problems in cancer research to, for example,
 - Determine **how many patients** should be included in a clinical trial
 - Identify if there is **evidence** that new treatments **work better** than old treatments
 - Select the **most effective** dose of a drug
 - **Find genes** that cause cancer
Statistics

- Statistics is the art/science of **summarizing data**
- Better yet...summarizing data so that non-statisticians can understand it
- Scientific investigations usually involve collecting a lot of data.
- But, at the end of your trial, what you really want is a “punch-line:”
 - Did the new treatment work?
 - Are the two groups being compared the same or different?
 - Is the new method more precise than the old method?
- Statistical inference is the answer!
Oncology Biostatisticians: What we do

- We find the “signal” among the “noise”
- We answer the question “how strong is the signal?”
- We quantify uncertainty
At what stages of cancer research should biostatisticians get involved?

- **All of them!**
 - Laboratory
 - Translational
 - Clinical Phase I (dose finding)
 - Clinical Phase II (preliminary efficacy)
 - Clinical Phase III (comparing two treatments)
How can biostatistics help cancer research?

- **Planning:**
 - **Study design selection**
 - Placebo versus active treatment?
 - How many doses should we test?
 - How many patients should be treated at each dose?
 - What *kinds* of patients should be included?

 - **Choosing the number of patients**
 - Too small: cannot make a strong conclusion
 - Too big: waste of time, money, resources
How can biostatistics help cancer research?

- **Study conduct**
 - Early stopping considerations
 - Some studies require interim analyses to determine how to proceed ("adaptive" designs)
 - Data safety monitoring
How can biostatistics help cancer research?

- **Analysis: what is the strength of evidence?**
 - Did the new treatment work or not?
 - Which is the best dose level?
 - Is the target inhibited?
 - What is the prognosis of a new patient?
 - Which genes are associated with response to therapy?
Why is biostatistics so important?

- **Efficiency**
 - We can find the “optimal” number of patients (not too big, not too small)
 - We can determine the “optimal” design to answer the research question
 - We can use the most appropriate analysis to answer the research question
 - Sometimes this requires sophisticated methods
 - This is where our job can be most interesting
Why is biostatistics so important?

- **Clarity**
 - If study is conducted and analyzed appropriately, the interpretation of results is CLEAR and CONCISE
 - A good analysis will not leave the audience wondering ‘what if?’
Why is it so important?

- **Ethics**
 - Clinical studies must be done with the utmost concern for patients
 - Unethical to perform experiments that will not yield useful information
 - Unethical to include too many patients in trials
Why is it so important?

- **Funding!**
 - Scarcity of grant money
 - Biostatistics sections often “make or break” grants
 - Why?
 - Lots of interesting science out there
 - Well-developed biostatistics section shows
 - Strong collaboration
 - Well-conceived experiment
 - Clear consideration of possible outcomes
 - What the next step after the current study will be
Any questions?

Please do not hesitate to contact me for more information:

Elizabeth Garrett-Mayer, PhD
garrettm@musc.edu
843-792-7764
86 Jonathan Lucas St.
Charleston, SC 29425